

(47%), 3-phenylpentane (44%), and 3-phenylheptane (3%) in a total yield of 94% based on toluene. In the absence of sodium, the degree of conversion of toluene into alkylation products does not exceed 48% (*n*-propylbenzene, 30%; 3-phenylpentane, 8%; 3-phenylheptane, 5%; and *n*-pentylbenzene, 5%), and in the absence of lithium, the degree of conversion is only 18% (*n*-propylbenzene, 15%, and 3-phenylpentane, 3%).

Alkylation of naphthalene with ethene in the presence of toluene is also accelerated when both alkali metals are present in the mixture; however, in this case, the dependence of the system activity on the proportions of lithium and sodium does not pass through a clear-cut maximum. For a Li : Na ratio ranging from (1 : 5) to (4.5 : 1.5), the total yield of naphthalene alkylation products (1-ethyl-, butyl-, hexyl-, and octylnaphthalenes and their dihydro derivatives) varies in the 72–78% range. If the reaction is carried out without sodium, the yield of these products decreases to 55%, while in the absence of lithium, it diminishes to 38%. The system with Li : Na = 2 : 1 is the most active toward alkylation of naphthalene without toluene. The reaction of ethene with this system affords the above-listed alkynaphthalenes and their dihydro derivatives in a total yield of 81%. When either lithium or sodium alone (instead of a mixture of Li and Na) is used, the degree of conversion of naphthalene into alkylation products again substantially decreases (to 60 and 32%, respectively).

Similar synergistic effects are observed in systems based on phenanthrene. For example, when the Li : Na ratio in the phenanthrene-containing system is 1 : 2, the yield of products of toluene alkylation with ethene reaches

91% of the theoretical value with respect to toluene (*n*-propylbenzene, 43%; 3-phenylpentane, 45%; and 3-phenylheptane, 3%). An increase and a decrease in this ratio both diminish the alkylation efficiency. In the absence of sodium, the degree of conversion of toluene into alkylation products is only 36% (*n*-propylbenzene, 27%; 3-phenylpentane, 3%; 3-phenylheptane, 2%; and *n*-pentylbenzene, 4%), and that without lithium is 11% (*n*-propylbenzene, 10%; and 3-phenylpentane, 1%).

Thus, the use of synergistic mixtures of lithium and sodium opens up the way to almost quantitative transformation of toluene into higher monoalkylbenzenes and to a substantial increase in the degree of conversion of naphthalene into alkylation products. The synergistic effects of alkali metals in olefin oligomerization have been described in a review.⁴ In these reactions, occurring at elevated temperatures, alkali metals were used as dispersions and were not activated by addition of aromatic promoters.

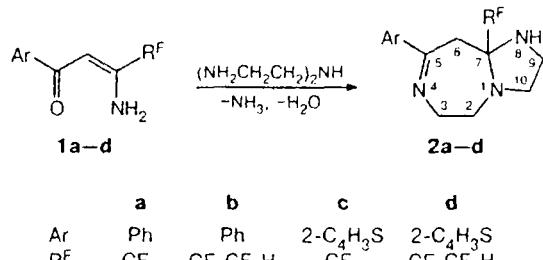
References

1. M. A. Il'atovskaya, S. Rummel, E. I. Mysov, M. Hermann, and V. B. Shur, *Izv. Akad. Nauk, Ser. Khim.*, 1993, 232 [*Russ. Chem. Bull.*, 1993, **42**, 212 (Engl. Transl.)].
2. S. Rummel, M. A. Il'atovskaya, E. I. Mysov, V. S. Lenenko, H. Langguth, and V. B. Shur, *Angew. Chem., Intern. Ed. Engl.*, 1996, **35**, 2489.
3. S. Rummel, M. A. Il'atovskaya, H. Langguth, and V. B. Shur, *Izv. Akad. Nauk, Ser. Khim.*, 1201 [*Russ. Chem. Bull.*, 1999, **48**, 1188 (Engl. Transl.)].
4. V. R. Ansheles and I. I. Pis'man, *Usp. Khim.*, 1997, **46**, 1183 [*Russ. Chem. Rev.*, 1997, **46** (Engl. Transl.)].

Received March 9, 1999

Simple synthesis of 1,4,8-triazabicyclo[5.3.0]dec-4-ene derivatives from β -amino- β -polyfluoroalkylvinyl ketones and diethylenetriamine

V. Ya. Sosnovskikh,* V. A. Kutsenko, and Yu. G. Yatuk


A. M. Gorky Ural State University,
51 prospekt Lenina, 620083 Ekaterinburg, Russian Federation.
Fax: +7 (343 2) 61 5978. E-mail: Vyacheslav.Sosnovskikh@usu.ru

It is known¹ that heating of β -amino- β -polyfluoroalkylvinyl ketones **1a,b** with diethylenetriamine to 90 °C over 36 h afforded a mixture of 1,5-di(polyfluoroacyl)amino-3-azapentanes and *N,N'*-(3-azapentamethylene)-bis(3-amino-3-polyfluoroalkyl-1-phenylprop-2-en-1-ones) in a ratio of 1 : 2. We found that the reactions of aminoenones **1a–d** with diethylenetriamine without a solvent at room temperature over 4–7 days

afforded compounds **2a–d**, which are derivatives of the new fused triazabicyclo[5.3.0]dec-4-ene system containing a bridgehead nitrogen atom, in 64–74% and 25–33% yields in the case of the trifluoromethyl and tetrafluoroethyl substituents, respectively. In this case, diethylenetriamine acted as a trinucleophile and its reactions with aminoenones **1a–d** involved the double nucleophilic addition at the β -carbon atom with elimination of am-

Translated from *Izvestiya Akademii Nauk. Seriya Khimicheskaya*, No. 7, pp. 1410–1411, July, 1999.

monia and the attack on the carbonyl group accompanied by liberation of a water molecule.

Evidently, the presence of a polyfluoroalkyl substituent is favorable for this reaction to proceed successfully because this substituent not only enhances the electrophilicity of the β -carbon atom but also stabilizes the imidazolidine ring, as in the cases of aminals and aminoketals.² The reaction under consideration is characterized by its simplicity, the availability of the initial compounds, and a rather high synthetic potential due to which this reaction is very useful in the synthesis of aza analogs of bicyclo[5.3.0]decane.

The IR spectra were recorded on an IKS-29 instrument as Nujol mulls. The ¹H NMR spectra were recorded on a Bruker WM-250 spectrometer in CDCl₃ operating at 250 MHz with Me₄Si as the internal standard.

5-Phenyl-7-trifluoromethyl-1,4,8-triazabicyclo[5.3.0]dec-4-ene (2a). Aminoenone **1a** (215 mg, 1.0 mmol) was dissolved in diethylenetriamine (215 μ L, 205 mg, 2.0 mmol). The reaction mixture was kept at -20 °C for 4–7 days. Crystals of bicyclic **2a** that precipitated were washed with water and recrystallized from hexane to yield 210 mg (74%), m.p. 77–78 °C. Found (%): C, 59.43; H, 5.53; N, 14.85. C₁₄H₁₆F₃N₃. Calculated (%): C, 59.36; H, 5.69; N, 14.83. IR, ν /cm⁻¹: 3350 (NH), 1630 (C=N), 1580 (benzene ring). ¹H NMR, δ : 2.08 (br.s, 1 H, NH); 3.04–3.22 (m, 5 H, C(9)H₂, C(10)H₂, C(2)HH); 3.31 (AB system, $\Delta\delta$ = 0.13, 2 H, C(6)H₂, J_{AB} = 15.4 Hz); 3.43–3.54 (m, 1 H, C(2)HH); 3.99 (dt, 1 H, C(3)HH, $2J$ = 16.1 Hz, $3J$ = 5.3 Hz); 4.29 (ddd, 1 H, C(3)HH, $2J$ = 16.1 Hz, $3J$ = 7.7 and 4.6 Hz); 7.37–7.40 (m, 3 H, CH arom.); 7.71–7.75 (m, 2 H, CH arom.).

5-Phenyl-7-(1,1,2,2-tetrafluoroethyl)-1,4,8-triazabicyclo[5.3.0]dec-4-ene (2b). The yield was 33%, m.p. 100–101 °C. Found (%): C, 57.25; H, 5.52; N, 13.46. C₁₅H₁₇F₄N₃. Calculated (%): C, 57.14; H, 5.43; N, 13.33. IR, ν /cm⁻¹: 3400 (NH), 1630 (C=N), 1580 (benzene ring). ¹H NMR, δ : 2.04 (br.s, 1 H, NH); 2.94–3.57 (m, 6 H, C(9)H₂, C(10)H₂, C(2)H₂); 3.35 (AB system, $\Delta\delta$ = 0.19, 2 H, C(6)H₂, J_{AB} = 15.1 Hz); 3.97 (ddd, 1 H, C(3)HH, $2J$ = 15.2 Hz, $3J$ = 5.7 and 4.2 Hz); 4.25 (ddd, 1 H, C(3)HH, $2J$ = 15.2 Hz, $3J$ = 7.8 and 4.5 Hz); 6.12 (tdd, 1 H, CF₂CF₂H, $J_{H,F}$ = 53.6 Hz, $J_{H,F}$ = 7.6 and 4.8 Hz); 7.38–7.43 (m, 3 H, CH arom.); 7.74–7.80 (m, 2 H, CH arom.).

5-(2-Thienyl)-7-trifluoromethyl-1,4,8-triazabicyclo[5.3.0]dec-4-ene (2c). The yield was 64%, m.p. 140–141 °C. Found (%): C, 49.77; H, 4.68; N, 14.63. C₁₂H₁₄F₃N₃S. Calculated (%): C, 49.82; H, 4.88; N, 14.52. IR, ν /cm⁻¹: 3350 (NH), 3090 (=CH), 1635 (C=N), 1615 (NH), 1530 (thiophene ring). ¹H NMR, δ : 2.10 (br.s, 1 H, NH); 3.03–3.22 (m, 5 H, C(9)H₂, C(10)H₂, C(2)HH); 3.28 (AB system, $\Delta\delta$ = 0.16, 2 H, C(6)H₂, J_{AB} = 15.3 Hz); 3.44–3.55 (m, 1 H, C(2)HH); 3.93 (dt, 1 H, C(3)HH, $2J$ = 16.5 Hz, $3J$ = 5.1 Hz); 4.22 (ddd, 1 H, C(3)HH, $2J$ = 16.5 Hz, $3J$ = 8.1 and 4.7 Hz); 7.04 (dd, 1 H, H(4')), $J_{H(4'),H(5')}$ = 5.1 Hz, $J_{H(4'),H(3')}$ = 3.7 Hz); 7.30 (dd, 1 H, H(3'), $J_{H(3'),H(5')}$ = 0.9 Hz); 7.38 (dd, 1 H, H(5')).

7-(1,1,2-Tetrafluoroethyl)-5-(2-thienyl)-1,4,8-triazabicyclo[5.3.0]dec-4-ene (2d). The yield was 25%, m.p. 110–111 °C. Found (%): C, 48.74; H, 4.60; N, 13.18. C₁₃H₁₅F₄N₃S. Calculated (%): C, 48.59; H, 4.71; N, 13.08. IR, ν /cm⁻¹: 3395 (NH), 3075 (=CH), 1620 (C=N), 1525 (thiophene ring). ¹H NMR, δ : 2.06 (br.s, 1 H, NH); 2.91–3.55 (m, 6 H, C(9)H₂, C(10)H₂, C(2)H₂); 3.29 (AB system, $\Delta\delta$ = 0.23, 2 H, C(6)H₂, J_{AB} = 15.0 Hz); 3.89 (ddd, 1 H, C(3)HH, $2J$ = 15.5 Hz, $3J$ = 5.5 and 4.6 Hz); 4.17 (ddd, 1 H, C(3)HH, $2J$ = 15.5 Hz, $3J$ = 8.2 and 4.6 Hz); 6.11 (tdd, 1 H, CF₂CF₂H, $J_{H,F}$ = 53.6 Hz, $J_{H,F}$ = 7.6 and 4.8 Hz); 7.04 (dd, 1 H, H(4')), $J_{H(4'),H(5')}$ = 5.1 Hz, $J_{H(4'),H(3')}$ = 3.7 Hz); 7.31 (dd, 1 H, H(3'), $J_{H(3'),H(5')}$ = 0.9 Hz); 7.37 (dd, 1 H, H(5')).

This work was financially supported by the Russian Foundation for Basic Research (Project Nos. 96-03-33373 and 99-03-32960).

References

1. V. I. Saloutin, Ya. V. Burgart, Z. E. Skryabina, and V. I. Filyakova, *Zh. Org. Khim.*, 1995, **31**, 54 [*Russ. J. Org. Chem.*, 1995, **31** (Engl. Transl.)].
2. A. V. Fokin, A. F. Kolomiets, and N. V. Vasil'ev, *Usp. Khim.*, 1984, **53**, 398 [*Russ. Chem. Rev.*, 1984, **53** (Engl. Transl.)].

Received April 13, 1999